Automation

Electronic Relays

- Timing
- Monitoring
- Level

Electronic Relays

Summary

Introduction 04
Timing Relays 06
Selection 06
Time Range Adjustment 07
Functions 08
Wiring Diagrams 11
Specifications 12
Technical Data 17
Dimensions (mm) 19
Voltage Monitors 20
RPW-FF - Phase Loss Function 20
RPW-SF - Phase Sequence Function 21
RPW-FSF - Phase Loss and Phase Sequence Function 22
RPW-SS - Undervoltage and Overvoltage Function 23
RPW-PTC - Temperature Variation Monitoring via PTC Function 24
ERWM-VM1 / VM2 25
Functions 26
Technical Data 27
Dimensions (mm) 28
Level Relay 29
Applications 29
Operating Modes 29
Selection 30
Specification 30
Accessories 30
Installation 31
Application Example 31
Operation 32
Sensitivity Adjustment 32
Technical Data 33
Dimensions (mm) 34

The Electronic Relays were designed according to international standards, being a compact solution for industrial, commercial and residential applications.

Characteristics

- LEDs for status indication
- Simple configuration and operation
- Adjustments via dial
- High-reliability contacts
- Excellent precision and repeatability
- 22.5 mm compact housing
- Direct mounting on DIN rail or fixed with screws and PLMP accessory

Timing Relays

- RTW - Wide range of functions, timing options and voltages
- RTW-MAT / MBT - Multiple timing with time setting from 0.1 s to 150 h and a wide voltage range $24-240 \mathrm{~V} \mathrm{ac} / \mathrm{dc}(50 / 60 \mathrm{~Hz})$
- ERWT-MF1 / MF2 - Multifunction with eight configurable functions, multiple timing with setting from 0.1 s to 10 days and a voltage range of $24-240 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$ (50/60 Hz)
- Models with 1 or 2 NOC outputs

Monitoring

RPW - Single Function Models

- SF - Phase sequence
- FF - Phase loss
- FSF - Phase sequence and phase loss
- SS - Undervoltage and overvoltage
- PTC - Overheating
- Wide supply voltage range

ERWT - Multifunction Models

- ERWT-VM1 / VM2 - Up to 6 monitoring functions
- Supply voltage from 208 to 480 V ac
- 01 relay output with reversible contact

Level

- Monitoring and automatic level adjustment of electric current liquid conductors
- Filling (EN) and draining (ES) function
- Sensitivity adjustment by means of dials
- 2 electrode types (accessories)

Standards IEC / EN 180941

Certifications

TIMING RELAYS

Electronic devices that allow switching an output signal according to the timing range function and selected time. Designed according to international standards, they are available in 22.5 mm wide housings and can be mounted on DIN rails 35 mm or fixed with screws (PLMP accessory required) available with one or two NOC outputs. They can be used in various types of industrial applications, such as electric motor starters, control panels, industrial furnaces and die casting machines. They can also be used in residential and commercial applications.

Selection

Notes: 1) Not available for multiple timing relays (RTW-M);
2) For single timing RTW-ET relays, only the 3-30 s timing range selection is available (UO3OS). For multiple timing RTW-ET relays, only the $0.1 \mathrm{~s}-10 \mathrm{~min}$ timing selection is available (MAT); 3) MF1 and MF2 available only for ERWT multifunction relays;
4) Not available for the star-delta relays (RTW-ET) and multifunction relays (ERWT-MF1, MF2);
5) Timing range U001S (0.1 - 1s) not available for the RTW-CI, CIR, RD and RDI relays;
6) Timing range U010M (60-600s) and U030M available only for the RTW-RDI relays;
7) Timing ranges MAT/MBT available only for the RTW-RE, PE, RD, CIL, CID or ET relays;
8) Timing range MT1 available only for ERWT-MF1 and MF multifunction relays;
9) For all single timing relays: RTW-CI, CIR and RDI.

For the multiple timing relays (MAT/MBT): RE, PE, CI, CIL, CIR, CID, RD and ET.
For multifunction relays: MF1 and MF2;
10) Only single timing relays.

Time Range Adjustment

Single Timing

Example: RTW-ET

Multiple Timing

Example: RTW-RD

Multifunction

Example: ERWT-MF1

RTW	RE / PE / CIL / CID	RD / CI/ CIR	RDI	ET
	0.1-1s ${ }^{1}$	0.3-3s	0.3-3s	3-30s
	0.3-3s	1-10s	1-10s	
	1-10s	3-30s	3-30s	
	3-30s	6-60s	6-60s	
	6-60s	10-100s	10-100	
	10-100s	30-300s	30-300s	
	30-300s	3-30min	1-10min	
	3-30min	-	-	

Note: 1) Not available in the version with supply voltage of 380-440 V ac

The RTW multiple timing relay has two adjustments via dials that must be combined to define the desired timing. First you should select the time range in the upper dial and then the multiplier in the lower dial; thus the result of the multiplication of the selected values will be the time to be counted.

Notes: The RTW with multiple timing function must be reset at each new time range adjustment. Changing the time range during the timing will have no effect.

The ERWT multifunction relay has dials, enabling the adjustment of the desired MF1 or MF2 function and the timing range (0.1s - 10 days).

See the content of the MF1 and MF2 function in the specification table.

[^0]
Functions

Single Timing (RTW) or Multiple Timing (RTW-MAT/MBT) Relays

Operating mode	Timing diagram	
RTW RE (ON-delay) - After the relay is energized, the time (T) set on the dial begins. After the end of the delay time, the output contacts switch on and remain energized until the supply voltage is removed.	Supply voltage A1-A2 / A3-A2 Output $15-18 / 25-28$	
RTW PE (impulse ON) - After the relay is energized, the output contacts switch on without delay and remain energized for the time (T) set on the dial.	Supply voltage A1-A2 / A3-A2 Output $15-18 / 25-28$	${ }_{T}$
RTW RD (OFF-delay) - With the relay energized, the output contacts switch on without delay when the command contact is energized. When the control supply voltage is removed, the output contacts return to their original condition after the time (T), set on the dial, elapses.	Supply voltage A1-A2 Control voltage B1 / A2 Output	
RTW RDI (OFF-delay with no control) - After the relay is energized, the output contacts switch on without delay. If the supply voltage is removed, the selected time delay begins, and, when such is completed, the output contacts switch OFF.	$\begin{array}{r} \text { Supply voltage } \\ \text { A1-A2 } \\ \text { Output } \\ 15-18 / 25-28 \end{array}$	
RTW CI (flasher 2 adjustments start ON) - After the relay is energized, the output contacts switch ON and OFF in cycles with the first cycle ON. The upper dial sets the time ($T_{O N}$) the contacts remain energized, while the lower dial selects the time ($\mathrm{T}_{\text {OFF }}$) the contacts remain de-energized.	Supply voltage A1-A2 / A3-A2 Output 15-18 / 25-28	
RTW CIR (flasher 2 adjustments start OFF) - After the relay is energized, the output contacts switch ON and OFF in cycles with the first cycle OFF. The upper dial sets the time ($T_{\text {ON }}$) the contacts remain energized, while the lower dial ($T_{\text {OfF }}$) selects the time the contacts remain de-energized.	Supply voltage A1-A2 / A3-A2 Output 15-18 / 25-28	
RTW CIL (flasher 1 adjustment ON) - After the relay is energized, the output contacts switch ON and OFF in cycles with the first cycle ON. A single selection determines the relay ON and OFF time.	Supply voltage A1-A2 / A3-A2 Output $15-18 / 25-28$	$\mathrm{T}^{\mid}\left\|\mathrm{T}^{\mid}\right\|$
RTW CID (flasher 1 adjustment OFF) - After the relay is energized, the output contacts remain OFF. After the time selected on the dial elapses, the contacts switch on, such behavior will continue in cycles. A single selection determines the relay ON and OFF time.	Supply voltage A1-A2 / A3-A2 Output 15-18 / 25-28	$\vdash_{T} \mathrm{~T}_{\mathrm{T}} \mathrm{~T}_{\mathrm{T}} \mathrm{~T}_{\mathrm{T}}$
RTW ET (star-delta) - After the relay is energized, the star output contacts switch on without delay and remain energized for the time (T) set on the dial. After the fixed time tm, the delta terminals switch on and will remain energized until the supply voltage is disconnected.	Supply voltage A1-A2 / A3-A2 Output Y (K1) 15-18 Output Δ (K2) 25-28	

Multifunction Models (ERWT-MF1)

Da (symmetric flasher, start ON) - Applying the supply voltage, timing begins with times given by T 1 (output ON) and T2 (output OFF). The cycle starts with the output relay energized. The times of full scale range T 1 and T 2 are the same. The total cycle is given by $T=T 1+T 2$. Interrupting the supply voltage with the output energized resets the time delay and de-energizes the output relay. This function requires the continuous application of supply voltage.
Timing diagram

E (Impulse ON) - The output relay is immediately energized when the supply voltage is applied and de-energized when the selected time (T) is completed. If the supply voltage is interrupted before the time delay is completed, the relay is de-energized and the time delay is reset. This function requires the continuous application of supply voltage.

Timing diagram

Fa (Impulse ON with control signal) - The output relay is energized after the control supply voltage is applied and de-energized when the time delay (T) is completed. If the supply voltage is interrupted before the time delay is completed, the relay is de-energized and the time delay is reset. This function requires the continuous application of supply voltage.

Timing diagram

G (star-delta) - Applying the supply voltage, the star output relay is energized, and the selected time begins. When the time (T) is completed, the star output relay is deenergized, and the fixed transition time (approximately 100 ms) begins. When the transition time is completed, the delta output relay is energized and remains energized while the relay is supplied. This function requires the continuous application of supply voltage.

Timing diagram

Multifunction Models (ERWT-MF2)

Operating mode							
Cb (ON and OFF-delay with control signal) - Timing begins when the supply voltage is applied. When the selected time delay (T) is completed, the output relay is energized and/ or de-energized, depending on the current situation. If the supply voltage is interrupted, the output relay is de-energized in case it is energized (after the time delay). If the relay supply voltage is interrupted before the time is completed, the time delay is reset and the output relay won't be energized. This function requires the continuous application of supply voltage.							
Timing diagram							
Supply voltage A1-A2							
Control voltage B1-A2							
$\begin{array}{r} \text { Output } \\ 15-18,25-28 \\ 15-16,25-26 \end{array}$							
LED U/T \square П】							
LED R1							
LED R2							
	T1	T2	<T1	T1	$\stackrel{<2}{ }$	T2	

Dd (symmetric flasher, start OFF) - Applying the supply voltage, timing begins with times given by T 1 (output ON) and T 2 (output OFF). The cycle starts with the output relay deenergized. The times of full scale range T 1 and T 2 are different. The total cycle is given by $\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2$. Interrupting the supply voltage with the output energized resets the time delay and de-energizes the output relay. This function requires the continuous application of supply voltage.
Timing diagram

Df (percentage flasher, start OFF - Applying the supply voltage, the output relay is cyclically activated for a percentage of the cycle time (T). The time the output remains activated is given by $\mathrm{t}=\mathrm{D} . \mathrm{T}$, where D corresponds to the adjustment percentage $(0 . .100 \%)$. The cycle starts with the output relay de-energized. If the supply voltage is interrupted before the time delay is completed with the output activated, the relay is deenergized and the time delay is reset. This function requires the continuous application of supply voltage.

la (delayed adjustable-length pulse) - The output relay is energized after the time T1 is completed, and it remains activated while time T2 is applied. If the supply voltage is interrupted before the time delay is completed, the relay is de-energized and the time delay is reset, restarting the timing. This function requires the continuous application of supply voltage.
Timing diagram

Operating mode
$\begin{array}{l}\text { Dc (symmetric flasher, start } \mathrm{ON} \text {) - Applying the supply voltage, timing begins with times } \\ \text { given by } \mathrm{T} 1 \text { (output } \mathrm{ON} \text {) and } \mathrm{T} 2 \text { (output } \mathrm{OFF} \text {). The cycle starts with the output relay } \\ \text { energized. The times of full scale range } \mathrm{T} 1 \text { and } \mathrm{T} 2 \text { are different. If the supply voltage is } \\ \text { interrupted before the time delay is completed, the relay is de-energized and the time } \\ \text { delay is reset. The total cycle is given by } \mathrm{T}=\mathrm{T} 1+\mathrm{T} 2 \text {. Interrupting the supply voltage with } \\ \text { the output energized resets the time delay and de-energizes the output relay. This function } \\ \text { requires the continuous application of supply voltage. } \\ \text { Timing diagram } \\ \text { Supply voltage } \\ \text { A--A2 }\end{array}$
otute

De (percentage flasher, start ON - Applying the supply voltage, the output relay is cyclically activated for a percentage of the cycle time (T). The time the output remains activated is given by $\mathrm{t}=\mathrm{D} . \mathrm{T}$, where D corresponds to the adjustment percentage ($0 . . .100 \%$). The cycle starts with the output relay energized. If the supply voltage is interrupted before the time delay is completed with the output activated, the relay is de-energized and the time delay is reset. This function requires the continuous application of supply voltage.

Timing diagram

Dg (flasher for motor reversing) - Applying the supply voltage, timing begins with times given by T1 (output ON) and T2 (output OFF), toggling between the R1 and R2 relays each time T1. The cycle begins with the output relay R1 energized and R2 de-energized. The times of full scale range T1 and T2 are different. If the supply voltage is interrupted with the output activated, the output relay R1 is energized, R2 is de-energized, and timing is restarted by T . This function requires the continuous application of supply voltage.

Timing diagram

J (bistable) - The relay switches its output contacts between normally open (NO) and normally closed (NC) and vice versa every pulse of the control signal. If the supply voltage is interrupted with the output activated, the output relay is de-energized. This function is not timed. This function requires the continuous application of supply voltage.

Timing diagram

Wiring Diagram

Single Timing Models

	RTW-ET	RTW-RE		RTW-PE		RTW-CI		RTW-CIR		RTW-CIL		RTW-CID		RTW-RD		RTW-RDI	
n은른	2 E	1E	2 E	1E	2 E	1E	2E	1 E	2E	1E	2 E	1 E	2E	1E	2E	1E	2E
	${ }^{\text {A1 }}{ }^{15}{ }^{\text {A }}$ [3	${ }^{\text {A1 }}{ }^{15}{ }^{\text {A3 }}$	${ }^{\text {A1] } 15}{ }^{15}{ }^{\text {A3 }}$	A1] ${ }^{15}$	${ }_{\text {A1 }}{ }^{15}{ }^{\text {A3 }}$	${ }_{\text {A1 }} \mathbf{1 5}$ [${ }^{\text {A3 }}$	${ }^{\text {A1 }]^{15}}$		${ }^{\left.\text {A1] }]^{15}\right]^{\text {A3 }}}$		${ }^{\text {A1 }} 1{ }^{15}{ }^{\text {A3 }}$	A1] 15	${ }_{\text {A1 } 15} 15$ A3		${ }^{\text {A1 }}{ }^{15}{ }^{\text {B1 }}$ 81	${ }^{\text {A1] }{ }^{15}}$	A1] ${ }^{15}$
	$\begin{array}{\|l\|l\|} \hline \text { RTW ET } \\ \hline 25 & 26 \\ \hline 16 & 28 \\ \hline 18 & { }^{28} 2 \\ \hline \end{array}$		$\begin{array}{\|l\|l\|l\|l\|} \hline \text { RTW RE } \\ \hline 25 & 26 \\ \hline 16 & 18 & \text { A2 } \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { RTW PE } \\ \hline 25 & 26 \\ \hline 16 & 28 \\ \hline 18 & \text { A8 } \\ \hline \end{array}$		$\begin{array}{\|l\|l\|l\|} \text { RTW CI } \\ \hline 25 & 26 & 28 \\ \hline 16 & 18 & \mathrm{~A} 2 \\ \hline \end{array}$	$\begin{array}{\|\|l\|l\|l\|} \hline \text { RTW } \\ \text { CIR } \\ \hline 16 & \\ \hline 18 & \\ \hline \end{array}$		$\left.\right\|_{\|l l l\| l} ^{\text {RTW CIL }}$		RTW					RTW RD
				1 E	$-_{1618}^{15}$		e_{1618}^{15}		21_{1618}^{15}		$+-f_{1618}^{15}$	1E ज	$7-\left.2\right\|_{1618} ^{15}$		$-)_{i=1}^{f}$		$\stackrel{1618}{15}_{1}^{y_{16}}$
	${ }_{12}{ }^{12}$		ϵ_{18}^{25}			$\begin{gathered} \text { 2E } \\ n_{1}^{A 1 A^{3}} \\ n_{1}^{1} \end{gathered}$	$-2-y_{1}^{25-1}$		$e_{618}^{-1-\underbrace{25}_{2628}}$								
	Supply voltage ${ }^{\text {1) }}$			Supply voltage ${ }^{1)}$				Supply voltage ${ }^{1)}$					voltage	Control	voltage ${ }^{2)}$	Supply	voltage
	A1-A2		A2		- A2	A3			- 2	A3 -			- A2(-)	B1(+)	- A2(-)	A1	A2
	24 Vac		dc		V ac	24			ac	24 V			V dc		dc	24-240 V	$\mathrm{ac} / \mathrm{dc}$
	48 V ac		dc		V ac	24 V			ac	24 V			Vac		ac		
	$\begin{gathered} 110-130 \\ \mathrm{~V} \mathrm{ac} \end{gathered}$		dc		30 V ac			110-1	30 Vac	24 V	dc		V ac		ac		
	$\begin{gathered} 220-240 \\ \mathrm{~V} \text { ac } \end{gathered}$		dc		40 V ac			220-2	40 V ac	24 V	dc		30 Vac	110-13	O V a	-	
	$\begin{gathered} 380-440 \\ \mathrm{Vac} \end{gathered}$		-	24-24	$\mathrm{Vac} / \mathrm{Ndc}$						-		40 V ac	220-2	0 V ac		
	15-16 / 18-output 1																
	25-26 / 28 - output 2																

Multifunction Models (MAT / MBT)

	RTW-ET	RTW-RE		RTW-PE		RTW-CIL		RTW-CID		RTW-RD	
	2E	1E	2 E	1E	2 E	1E	2E	1E	2E	1E	2E
				${ }^{\text {A1] } 15}$	${ }^{\text {A1 }{ }^{15}{ }^{15} \text { - }}$	${ }^{\text {A1] } 15}$		${ }^{\text {A1] } 15}$	${ }^{-{ }^{\text {A1 } 15} \mid}$		
				RTW PE $16 /{ }^{18} / \mathrm{A} 2$		RTW CIL 	RTW CIL 25 26 26 16 18 18	$$		RTW RD	RTW RD 25 16 26 28 16 18 $A 2$
Wiring diagrams		1E		1E		1E		1E			
		2E					$z_{8}^{25}-\underbrace{25}_{2628}$		$t-\left.\right\|_{2628} ^{25}$	2E	
	Supply voltage									Supply voltage	Control voltage ${ }^{\text {1) }}$
	A1-A2									A1(+) - A2(-)	B1(+) - A2(-)
	$24-240 \mathrm{Vac} / \mathrm{dc}$									$\begin{gathered} 24-240 \\ \mathrm{Vac} / \mathrm{Vcc} \end{gathered}$	$\begin{gathered} 24-240 \\ \mathrm{Vac} N \mathrm{dc} \end{gathered}$
	15-16/18-output 1										
	25-26 / 28 - output 2										

Multifunction Models ERWT (MF1-MF2)

$\begin{aligned} & \text { © } \\ & \text { 들 } \\ & \text { ㅡㅡㄴ } \end{aligned}$	ERWT-MF1 / MF2	Supply voltage	Wiring diagram	Control voltage
	ERWT MF1/MF2	$\begin{gathered} \mathrm{A} 1-\mathrm{A} 2 \\ 24-240 \mathrm{Vac} / \mathrm{cc} \end{gathered}$		$\begin{gathered} \mathrm{B} 1-\mathrm{A} 2 \\ 24-240 \mathrm{Vac} / \mathrm{cc} \end{gathered}$
	15-16 / 18- output contact 1		8 - output contact 1	

Specification

Single Timing, Voltage and Function Relay

Function: ON-Delay (RE)

Model	Function	Contacts	Timing	Reference (complete with the supply voltage)
RTW	RE	1NOC	0.1s-1s	RTW-RE01-U001S- *
			0.3s - 3 s	RTW-RE01-U003S- *
			1s - 10s	RTW-RE01-U010S- *
			3s-30s	RTW-RE01-U030S-
			6s - 60s	RTW-RE01-U060S-*
			10s-100s	RTW-RE01-U100S- *
			30s-300s	RTW-RE01-U300S- *
			3-30min	RTW-RE01-U030M- *
		2NOC	0.1s-1s	RTW-RE02-U001S-
			$0.3 \mathrm{~s}-3 \mathrm{~s}$	RTW-RE02-U003S-
			1s - 10s	RTW-RE02-U010S- *
			3s-30s	RTW-RE02-U030S- *
			6s - 60s	RTW-RE02-U060S- *
			10s - 100s	RTW-RE02-U100S- *
			30s-300s	RTW-RE02-U300S- *
			3-30min	RTW-RE02-U030M-*

Supply voltage		
Code	Terminals (V ac $=50 / 60 \mathrm{~Hz})$	
	A1-A2	A3-A2
E26	24 V ac	24 V dc
E33	48 V ac	24 V dc
E37	$110-130 \mathrm{~V}$ ac	24 V dc
E40	$220-240 \mathrm{~V} \mathrm{ac}$	24 V dc
D711)	$380-440 \mathrm{~V}$ ac	-

Note: 1) Timing range from 0.1 to 1 s not available for this voltage.
Function: Impulse ON (PE)

Model	Function	Contacts	Timing	Reference (complete with the supply voltage)
RTW	CIR	1NOC	0.1s-1s	RTW-PE01-U001S-
			0.3s-3s	RTW-PE01-U003S- *
			1s - 10s	RTW-PE01-U010S-
			3s-30s	RTW-PE01-U030S- *
			6s-60s	RTW-PE01-U060S- *
			10s - 100s	RTW-PE01-U100S- *
			30s-300s	RTW-PE01-U300S-
			3-30min	RTW-PE01-U030M- *
		2NOC	0.1s -1s	RTW-PE02-U001S-
			$0.3 \mathrm{~s}-3 \mathrm{~s}$	RTW-PE02-U003S- *
			1s - 10s	RTW-PE02-U010S- *
			3s-30s	RTW-PE02-U030S-
			6s-60s	RTW-PE02-U060S-
			10s-100s	RTW-PE02-U100S-
			30s-300s	RTW-PE02-U300S-
			3-30min	RTW-PE02-U030M- *

Function: OFF-Delay with Control Signal (RD)

Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWT, MAT or MBT relay.

Specification

Single Timing Relays

Function: OFF-Delay (RDI)

Model	Function	Contacts	Timing	Reference (complete with the supply voltage)
RTW	RDI	1NOC	0.1s - 1s	-
			0.3s-3s	RTW-RDIO1-U003S-*
			1s-10s	RTW-RDIO1-U010S-*
			3s-30s	RTW-RDIO1-U030S-*
			6s -60s	RTW-RDI01-U060S- *
			10s-100s	RTW-RDIO1-U100S-*
			30s - 300s	RTW-RDIO1-U300S-*
			1-10min	RTW-RDI01-U010M- *
		2NOC	0.1s - 1s	-
			$0.3 \mathrm{~s}-3 \mathrm{~s}$	RTW-RD02-U003S-
			1s-10s	RTW-RD02-U010S- *
			3s-30s	RTW-RD02-U030S-
			6s-60s	RTW-RD02-U060S-
			10s-100s	RTW-RD02-U100S-
			30s-300s	RTW-RD02-U300S-*
			1-10min	RTW-RD02-U010M-*

Certifications
CEPG
(UL)

Supply voltage		
Code	Terminals (V ac=50/60 Hz)	
	A1-A2	A3-A2
E05	$24-240$ $\mathrm{Vac} / \mathrm{V} \mathrm{dc}$	-

Function: Flasher with Two Settings and Start ON (CI)

Model	Function	Contacts	Timing	Reference (complete with the supply voltage)						
RTW	Cl	1NOC	0.1s - 1s	-	(10]:	Certifications				
			$0.3 \mathrm{~s}-3 \mathrm{~s}$	RTW-C101-U003S-						
			1s - 10s	RTW-CI01-U010S-						
			3s-30s	RTW-CI01-U030S-						
			6s-60s	RTW-CI01-U060S-						
			10s-100s	RTW-CI01-U100S-						
			30s-300s	RTW-CI01-U300S-						
			3-30min	RTW-C101-U030M-						
		2NOC	0.1s -1s	-						
			$0.3 \mathrm{~s}-3 \mathrm{~s}$	RTW-CIO2-U003S-	- Supply voltage					
			1s-10s	RTW-CI02-U010S-						
			3s - 30s	RTW-CIO2-U030S-	Code	Terminals ($\mathrm{Vac}=50 / 60 \mathrm{~Hz}$)				
			6s-60s	RTW-CIO2-U060S-*		A1-A2	A3-A2			
			10s - 100s		E26	24 Vac	24 V dc			
			10s-100s		E33	48 V ac	24 V dc			
			30s - 300s	RTW-CIO2-U300S-	E37	$110-130 \mathrm{~V}$ ac	24 V dc			
			3-30min	RTW-CIO2-U030M- *	E40	$220-240 \mathrm{Vac}$	24 V dc			

Function: Flasher with Two Settings and Start OFF (CIR)

Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWT, MAT or MBT relay.

Specification

Single Timing Relays

Function: Flasher with One Setting and Start ON (CIL)

Certifications

Supply voltage		
	Terminals (V ac =50/60 Hz)	
	A1-A2	A3-A2
E26	24 V ac	24 V dc
E33	48 V ac	24 V dc
E37	$110-130 \mathrm{~V} \mathrm{ac}$	24 V dc
E40	$220-240 \mathrm{~V} \mathrm{ac}$	24 V dc

Function: Flasher with One Setting and Start OFF (CID)

Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWT, MAT or MBT relay.

Specification

Single Timing Relays

Function: Star-Delta (ET)

Model	Function	Contacts	Timing	Reference (complete with the supply voltage)
RTW	ET	2NOC	$3 \mathrm{~s}-30 \mathrm{~s}$	RTW-ETO2-U030S-

Supply voltage			
Code	Terminals $(\mathrm{V} \mathrm{ac}=50 / 60 \mathrm{~Hz})$		
	A1-A2	A3-A2	
E26	24 V ac	24 V dc	
E33	48 V ac	24 V dc	
E37	$110-130 \mathrm{~V} \mathrm{ac}$	24 V dc	
E40	$220-240 \mathrm{Vac}$ $24-240$ $\mathrm{Vac} / \mathrm{V} \mathrm{dc}$	24 V dc	
E05	-		

Certifications

Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWT, MAT or MBT relay.

Multiple Timing Relays

Models: MAT or MBT (Multiple Timing), Multi Voltage and Single Function

Model	Function	Contacts	Timing	Reference
RTW	ON-delay (RE)	1NOC	$0.1-10 \mathrm{~min}$	RTW-RE01-MATE05
			0.2-150h	RTW-RE01-MBTE05
		2NOC	$0.1-10 \mathrm{~min}$	RTW-RE02-MATE05
			0.2-150h	RTW-RE02-MBTE05
	Impulse ON (PE)	1NOC	0.1-10min	RTW-PE01-MATE05
			0.2-150h	RTW-PE01-MBTE05
		2NOC	0.1 - 10min	RTW-PE02-MATE05
			0.2-150h	RTW-PE02-MBTE05
	OFF-delay with control signal (RD)	1NOC	0.1-10min	RTW-RD01-MATE05
			0.2-150h	RTW-RD01-MBTE05
		2NOC	0.1-10min	RTW-RD02-MATE05
			0.2-150h	RTW-RD02-MBTE05
	Flasher with one setting and start ON (CIL)	1NOC	0.1-10min	RTW-CIL01-MATE05
			0.2-150h	RTW-CIL01-MBTE05
		2NOC	0.1-10min	RTW-CILO2-MATE05
			0.2-150h	RTW-CILO2-MBTE05
	Flasher with one setting and start OFF (CID)	1NOC	$0.1-10 \mathrm{~min}$	RTW-CID01-MATE05
			0.2-150h	RTW-CID01-MBTE05
		2NOC	0.1-10min	RTW-CID02-MATE05
			0.2-150h	RTW-CID02-MBTE05
	Star-delta (ET)	2NOC	0.1 - 10min	RTW-ET02-MATE05

Specification

Multifunction Relays

Models: MF1 / MF2 (Multifunction), Multiple Voltage and Multiple Timing

Reference	Supply voltage	Contacts	Timing
ERWT-MF1-02MT1E05	$24-240 \mathrm{Vac} / \mathrm{V} \mathrm{dc}$	2 NOC	$0.1 \mathrm{~s}-10$ days
ERWT-MF2-02MT1E05	2		

Notes: The MF1 model has 8 configurable functions:

A - On-delay

Ba - ON-delay with control signal
Ca - ON and OFF-delay with control signal
Da - Symmetric flasher, start ON
Db - Symmetric flasher, start OFF
E-Impulse ON
Fa - Impulse ON with control signal
G - Star-delta
The MF2 model has 8 configurable functions:
Cb-ON and OFF-delay with control signal
Dc - Symmetric flasher, start ON
Dd - Asymmetric flasher, start OFF
De - Percentage flasher, start ON
Df - Percentage flasher, start OFF
Dg - Flasher for motor reversing
J- Bistable
la - Delayed adjustable-length pulse

Certifications
CE COLUS

Technical Data

			Model								
Inputs	Supply voltage (Us) ${ }^{1{ }^{1}}$	A1-A2	24 Vac		48 V ac		110 to 130 V ac		220 to 240 V ac	24 to 240 V ac / V dc	
		A3-A2	24 V dc	-	24 Vdc	-	24 V dc	-	24 V dc	-	-
	Rated supply voltage tolerance		0.85 to 1.10 x Us								
	Rated frequency		$50 / 60 \mathrm{~Hz}$								
	Maximum consumption		70 mA at 240 V ac (Us)							$\begin{gathered} 80 \mathrm{~mA} \text { at } \\ 240 \mathrm{~V} \text { ac (Us) } \end{gathered}$	
	Control supply voltage (RD function) ${ }^{2)}$	B1-A2	Voltage-related triggering (Us)								
	Rated insulation voltage (U_{i})		300 V								
Time adjustment	Minimum time for reset		100 ms								
	Minimum ON time		50 ms								
	Scale accuracy (full scale)		$\pm 5 \%{ }^{17}$								
	Repeatability accuracy (full scale)		$\pm 2 \%$								
	Changeover time Y - Δ (star-delta function)		100ms $\pm 20 \%$								
Outputs	Capacity of the output contacts (l_{e})		$\mathrm{AC}-12$ (resistive) at 250 V ac: 5 A AC-15 at 230 V ac: 3 A DC-13 at $24 \mathrm{~V} \mathrm{dc:} 1 \mathrm{~A}$ DC-13 at 48 V dc: 0.45 A DC-13 at $60 \mathrm{~V} \mathrm{dc:} 0.35 \mathrm{~A}$ DC-13 at 125 V dc: 0.2 A DC-13 at 250 V dc: 0.1 A							AC-12 (resistive) at 250 V ac: 5 A $\mathrm{AC}-15$ at 230 V ac: 3 A DC-13 at $24 \mathrm{~V} \mathrm{dc:} 1 \mathrm{~A}$ DC-13 at $48 \mathrm{~V} \mathrm{dc:} 0.45 \mathrm{~A}$ DC-13 at $60 \mathrm{~V} \mathrm{dc:} 0.35 \mathrm{~A}$ DC-13 at 125 V dc: 0.2 A DC-13 at 250 V dc: 0.1 A B300 R300	
	Rated thermal current ($l_{\text {th }}$)		$\begin{aligned} & 10 \mathrm{~A} \text { for } \mathrm{AC} \\ & 1 \mathrm{~A} \text { for } \mathrm{DC} \end{aligned}$								
	Fuse (class gL/gG)		4 A								
	Mechanical lifespan		30×10^{6} switching cycles								
Characteristics	Ambient temperature -Operation -Storage		$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$								
	Degree of protection		Enclosure: IP20 Terminals: IP20								
	Connection section (min. to max.) - Cable without end sleeve		$\begin{aligned} & 1 \times(0.5 \text { to } 2.5) \mathrm{mm}^{2} \\ & 2 \times(0.5 \text { to } 1.5) \mathrm{mm}^{2} \end{aligned}$								
	- Cable with end sleeves		$\begin{aligned} & 1 \times(0.5 \text { to } 1.5) \mathrm{mm}^{2} \\ & 2 \times(0.5 \text { to } 1.5) \mathrm{mm}^{2} \end{aligned}$								
	- AWG-Rigid Wire		$2 \times(20$ to 14) AWG								
	Tightening torque		0.8 to 1.2 N.m								
	Terminal screw		7 to 10.6 Lb.in								
	Assembly position		Any								
	Shock resistance		$15 \mathrm{~g} / 11 \mathrm{~ms}$								
	Vibration resistance		10 to $55 \mathrm{~Hz} / 0.35 \mathrm{~mm}$								
	Weight		0.08 kg - models with 1 NOC 0.095 kg - models with 2NOC								
	Pollution degree		2								
	Overvoltage category		1								

[^1]Technical Data

Notes: 1) In the versions with two operational voltages, only one must be connected;
2) The same potential must be applied to A1 and B1, polarized.

Dimensions (mm)

Single Timing or Multiple Timing Models

Multifunction Models (MF1 / MF2)

Accessories

PLMP Adapter

MARC adapter for direct mounting on WEG contactors

VOLTAGE
 MONITORS

They are electronic devices intended to monitor three-phase systems and interrupt the process operation whenever a failure occurs. Designed according to international standards, they are available in 22.5 mm wide housings and can be mounted on DIN rails 35 mm or fixed with screws (PLMP accessory required), being a compact and safe solution.

RPW-FF - Phase Loss Function

It is intended to protect three-phase systems against the loss of one phase (without neutral). For monitoring the neutral, a bridge must be provided between terminals A and B; thus the RPW-FF will monitor the phase loss and also the neutral voltage (terminal N).

Installation

It is directly connected to the three phases (terminals L1, L2 and L3) of the power grid to be monitored (connect the neutral if applicable).

Operation

The output relay switches the contacts to the operation position (closing terminals 15-18), and the red LED (relay) and green LED (supply voltage) will switch on. Adjust the sensitivity of the line voltage.
If one of the phases drops below the percentage limit set on the dials, the coil output contacts will be de-energized, opening contacts 15-18, and the red LED will turn OFF.

Note: The RPW-FF protects against ghost phase - In the monitoring of an electric motor, the phase loss makes the remaining phases induce a ghost phase on the winding coil of the respective phase, raising the current of the other two phase and overheating the motor. The winding with induced voltage works as a voltage generator (ghost phase).

Selection
RPW - FF - D70
WEG Protective / Monitoring

Phase loss function
\qquad

Certifcations
(UL) US RAM
C ϵ

Specification

Supply voltage (L1-L3-L3) $50 / 60 \mathrm{~Hz}$	Reference
$220-240 \mathrm{~V} \mathrm{ac}$	RPW-FF-D66
$380-415 \mathrm{~V} \mathrm{ac}$	RPW-FF-D70
$440-480 \mathrm{~V} \mathrm{ac}$	RPW-FF-D74

Wiring Diagram

The RPW protective relay has LEDs for state indication, as shown on the right:

RPW-SF - Phase Sequence Function

It is intended to protect three-phase systems against the inversion of the phase sequence (L1-L2-L3).

Installation

It is directly connected to the three phases (terminals L1, L2 and L3) of the power grid to be monitored.

Operation

If the phase sequence is correct, the output relay switches the contacts to the operation position (closing terminals 15-18), and the red LED (relay) and green LED (power supply) will switch on.

Certifications

C (UL) US

Selection

Specification

Supply voltage (L1-L2-L3) $50 / 60 \mathrm{~Hz}$	Reference
$220-240 \mathrm{~V}$ ac	RPW-SF-D66
$380-415 \mathrm{~V}$ ac	RPW-SF-D70
$440-480 \mathrm{~V}$ ac	RPW-SF-D74

Wiring Diagram

[^2]
RPW-FSF - Phase Loss and Phase Sequence Function

It is intended to protect three-phase systems against phase loss and phase inversion. For applications with neutral, a bridge must be provided between terminals A and B. The RPW-FSF will monitor against phase loss and also the voltage on the neutral, which must be connected.

Installation

It is directly connected to the three phases (terminals L1, L2 and L3) of the power grid to be monitored (connect the neutral if applicable).

Operation

Energize the relay and observe if the green LED (power supply) and the red LED (relay) turn on. If they do not switch on, check for voltage between phases L1, L2 and L3 (including in relation to the neutral if applicable), and if they are in the correct sequence.

Certifications

C \in

Selection

Specification

Supply voltage (L1-L2-L3) $50 / 60 \mathrm{~Hz}$	Reference
$220-240 \mathrm{~V}$ ac	RPW-FSF-D66
$380-415 \mathrm{~V}$ ac	RPW-FSF-D70
$440-480 \mathrm{~V}$ ac	RPW-FSF-D74

Wiring Diagram

The RPW protective relay has LEDs for state indication, as shown on the right:

Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWM relay.

RPW-SS - Undervoltage and Overvoltage Function

With this function, the RPW monitors the minimum and maximum voltage variations within which a three-phase power supply can operate. Whenever an under or overvoltage condition is present, the relay will switch its output in order to interrupt the operation of the monitored motor or process.
Note: the RPW SS is suitable for line frequencies of $50 / 60 \mathrm{~Hz}$.

Installation

It is directly connected to the three phases (terminals L1, L 2 and L 3) of the power grid to be monitored.

Operation

If the voltage on terminals A1 and A2 is correct, the output relay is energized (contacts $15-18$ close). If the monitored voltage (supply voltage) is below or above the adjusted limits for undervoltage and overvoltage, respectively, the output relay is de-energized (contacts 15-18 open). The output relay is energized again when the voltage returns to an acceptable value.

Certifications

Specification

Supply voltage (L1-L2-L3) 50/60 Hz	Reference
208 V ac	RPW-SS-D77
220 V ac	RPW-SS-D23
230 V ac	RPW-SS-D24
240 V ac	RPW-SS-D25
380 V ac	RPW-SS-D33

Supply voltage (L1-L2-L3) 50/60 Hz	Reference
400 V ac	RPW-SS-D34
415 V ac	RPW-SS-D35
440 V ac	RPW-SS-D36
460 V ac	RPW-SS-D38
480 V ac	RPW-SS-D39
$220 \mathrm{~V} \mathrm{ac} \mathrm{(single-phase)}$	RPW-SSM-D23

Wiring Diagram

Notes: 1) Available only for voltage D23 (220 V ac - 50/60 Hz). Pending certifications.
For application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWM relay.

RPW-PTC - Temperature Variation
 Monitoring via PTC Function

It is intended to monitor the temperature variation in motors or generators in machines in general equipped with PTC temperature sensors. It has digital electronics, which provides high accuracy and noise immunity.

Installation

It must be connected in series to PTC sensors (maximum 3). The RPW has a test device for the PTC sensor. In case it is not connected or it is in a fault state, the LED will indicate (LED will flash).

Operation

When it is energized, if the temperature is below the tripping value, the output relay will switch (energize) without delay, switching ON the red LED. In case the temperature rises above the limit, a sudden variation will occur in the PTC resistance, and the output relay will de-energize (red LED switches OFF). The relay will be energized again as soon as the temperature returns to the normal values.

Certifications

Selection

Specification

Power supply (L1-L2-L3)	Reference
$24-240 \mathrm{~V}$ ac $50 / 60 \mathrm{~Hz}$ or $24-240 \mathrm{~V} \mathrm{dc}$	RPW-PTC-E05

Note: PTC sensor not included.

Wiring Diagram

Terminals

A1 - A2	Supply voltage
S1 - S2	PTC sensor input
$15-16-18$	Output

$\boldsymbol{\zeta}_{1}$	ON	Normal operation
	OFF	Undervoltage, Overvoltage and Phase loss
후	ON	Supply voltage
	OFF	Without supply voltage
	Flashing	Fault in the PTC sensor

[^3]The tripping temperature depends on the used PTC curve.

ERWM-VM1 / VM2

The ERWM controls the faults in the voltage monitoring within which a three-phase supply voltage can operate. Whenever a failure in the power grid occurs, the relay will switch its output in order to interrupt the operation of the monitored motor or process.

Installation

It is directly connected to the three phases (L1, L2 and L3) of the power grid to be monitored (connect the neutral if applicable).

Operation

If the voltage on terminals L1, L2 and L3 is correct, the output relay is energized (contacts $15-18$ close). If the monitored supply voltage is in the adjusted operating range, the output relay is de-energized (contacts $15-18$ open). The output relay is energized again when the voltage returns to an acceptable value.

Certifications

[^4]
Specification

Reference	Supply voltage
ERWM-VM1-01D90	$208-480 \mathrm{~V}$ ac $50 / 0 \mathrm{~Hz}$ (L1-L2-L3)
ERWM-VM2-01D90	

Wiring Diagram

Electrical connection (VM1 / VM2)	
$\mathrm{L} 1-\mathrm{L} 2-\mathrm{L} 3$	Supply voltage
$\mathrm{N}-\mathrm{A}-\mathrm{B}$	Voltage and neutral detection
$15-16 / 18$	Output contact

Functions

Multiple Protection Models (ERWM-VM1 / VM2)

>Un (overvoltage) - It occurs after the rated tripping voltage (Un) (208 to 480 V) and the tripping overvoltage percentage ($>$ Un) (3 to 15%) are selected. The time delay is defined by the time scale (1 to 30 s) or disabled (0FF) acting in a maximum of 350 ms . The selected time delay is for both the fault detection and the return of the ERWM to normal operation.

Timing diagram

Asy (unbalance) - It occurs when the voltage of one, two or three of the phases vary, calculating the average value of the three phases and also the greatest voltage variation value by the average value. The worst voltage variation case is taken into account in the unbalance calculation. The time delay is defined by the time scale (1 to 30 s) or disabled (OFF) acting in a maximum of 350 ms . The selected time delay is for both the fault detection and the return of the ERWM to normal operation.

PS (phase sequence ${ }^{\text {1) }}$ - It occurs when the phases are not connected in the correct sequence (L1-L2-L3) or even when a phase inversion occurs during operation. The maximum time delay is 350 ms for both the fault detection and the return of the EWM to normal operation. Only the ERWM-VM1 measures phase sequence.

$>$ Un (undervoltage) - It occurs after the rated tripping voltage $(\mathrm{Un})(208$ to 480 V$)$ and the tripping undervoltage percentage (>Un) (-3 to -15%) are selected. The time delay is defined by the time scale (1 to 30 s) or disabled (OFF) acting in a maximum of 350 ms . The selected time delay is for both the fault detection and the return of the ERWM to normal operation.
Timing diagram

ND (neutral detection) - It occurs when the Neutral is not connected or it is disconnected during operation, or also when the voltage rises above 20 V (due to unbalance in the power grid). The maximum time delay is 350 ms for both the fault detection and the return of the ERWM to normal operation. For neutral detection, it is necessary to provide a bridge between terminals A and B ; otherwise, the neutral will not be monitored.

Technical Data

	Product	RPW FF	RPW SF	RPW FSF	RPW SS	RPW PTC	ERWM-VM1	ERWM-VM2
	Supply voltage (Us) L1-L2-L3		0, 380, 44	O Vac (selec		$\begin{gathered} 24-240 \\ \mathrm{~V} \mathrm{ac} / \mathrm{Vdc} \end{gathered}$	208-4	V ac
	Frequency				$50 / 60 \mathrm{~Hz}$			
	Sensitivity adjustment	70 to 90%	-	70 to 90\%	+/-3to 15\%	-	+/-3	15\%
Inputs	Rated supply voltage tolerance				to 1.1 x Us for			
	Maximum consumption				80 mA			
	Maximum voltage allowed on neutral	20 Vac		20 Vac	-	-		
	Scale accuracy (full scale)		+/-20\%		-	-		
	Insulation voltage U_{i}				600 V			
	Repeatability precision		+/-1\%		-	-		
					A (resistive load			
Outputs					3 A (AC-15)			
	Fuse (class gL/gG)				4 A			
	Mechanical lifespan				0^{6} switching			
	Electrical lifespan				0^{5} switching			
	Ambient temperature allowed				-			
	Operation				$-5 \mathrm{a}+60^{\circ} \mathrm{C}$			
	Storage				$-40 \mathrm{a}+85^{\circ} \mathrm{C}$			
	Degree of protection			Enclo	IP20 / Termi	IP20		
	Connection section (min. to max.)				-			
	Cable without and sleeves				(0.5 to 2.5) m			
	Cable wriout end				(0.5 to 1.5) m			
	Cable with and seeves				(0.5 to 1.5) m			
	Cab				(0.5 to 1.5) m			
	AWG-Rigid Wire				$\mathrm{x}(20$ to 14) m			
					0.8 to $1.2 \mathrm{N.m}$			
					7 to 10.6 Lb.in			
	Terminal screw				M3			
	Assembly position				Any			
	Shock resistance				$15 \mathrm{~g} / 11 \mathrm{~ms}$			
	Vibration resistance				$55 \mathrm{~Hz} / 0.35$			
	Weight				0.1 kg			
	Pollution degree				2			
	Overvoltage category				III			
	European Union				All models			
	Russia			-FSF/SF/SS/			-	-
	Argentina			All models			-	
	Canada and USA				All models			

Note: the RPW-SSM-D23 (single-phase) certifications are pending.

Dimensions (mm)

Single Timing or Multiple Timing Models

Multifunction Models (VM1 / VM2)

Accessories

PLMP Adapter

MARC adapter for direct mounting on WEG contactors

LEVEL

RELAY

It is an electronic control device that enables monitoring and automatically setting the level of conductive (non-explosive) liquids by means of submerged electrodes. It has a dial that allows adjusting the electronic circuit to the liquid resistance.

Applications

- Protection against dry run of pumps
- Protection against tank overflow
- Activation of solenoids, sound or light alarms
- Process automation in general

Certifications

C \in

Operating Modes

Draining Function

The output relay energizes (contacts 15-18 close) when the liquid reaches the maximum level electrode and de-energizes (contacts 15-18 open) when the minimum level electrode is no longer covered by the liquid.

Filling Function
The output relay energizes (contacts 15-18 close) when the minimum level electrode is not covered and de-energizes (contacts 15-18 open) when the liquid reaches the maximum level electrode.

RNW-EN

A1	15	
RNW EN		
Max	Min.	C
16	18	A2

Wiring diagram

Function diagram

Selection

Specification

Reference	Supply voltage	Description
RNW-EN-E09	$100-240 \mathrm{~V}$ ac or $100-240 \mathrm{~V}$ dc (A1-A2)	Level relay, filling function

Accessories

Reference	Description
EHW	Teflon-coated stainless steel shaft, 300 mm long, chrome-plated brass hexagonal screw

Shaft electrode

Pendulum electrode

Reference	Description
PLMP	Adapter for screw fixing (2 parts per package)

PLMP Adapter

Reference	Description
MARC	Adapter for direct mounting on WEG contactors CWM9-105 / CAWM4

MARC Adapter

Note: the PLMP and MARC adapters can be installed with any WEG electronic relay (RTW, RPW or RNW).
30 | Level Relay (RNW)

Installation

The electrodes must be installed on the RNW and fixed in the tank according to desired levels, minimum or maximum, and the reference electrode must be positioned in the lower part, below the other electrodes. The electrodes are available in 2 models, shaft (EHW) or pendulum (EPW). When a metallic tank is used, it can replace the reference electrode.

Pendulum

The shaft model (EHW) can be installed in the horizontal and vertical position

Application Example

Operation

It is based on the measurement of the electric current of the liquid in the tank by means of a set of submerged electrodes, which work as liquid presence/absence sensors.
When the system is energized, an alternating current ${ }^{1)}$ is applied to the reference electrode. Once the liquid comes into contact with the electrodes, a path is established for the circulation of electric current between them. An electronic circuit compares the current and, according to the chosen model, executes the logic that switches the output contacts.

Note: 1) The AC current minimizes the electrolysis and increases the lifespan of the electrodes.

Sensitivity Adjustment

The resistance may vary according to the liquid and the position of the electrodes. in order to adapt the RNW electronic circuit to the liquid, the sensitivity must be adjusted through the front dial, which has a graded scale $(k \Omega)$.
To perform the sensitivity adjustment, all electrodes must be submersed in the liquid of the tank, and the dial must be positioned at its anti-clockwise limit (smallest resistance). With the relay energized, the dial must be turned clockwise (increasing the resistance) until the relay output switches its contacts and the red LED changes its status. To confirm the adjustment, the reference electrode must be disconnected and immediately reconnected. The RNW must return to its previous status of de-energization, and thus the ideal sensitivity point will be adjusted. If that does not happen, a new adjustment procedure must be performed.

Technical Data

Inputs	Product		RNW ES / RNW EN
	Supply voltage (1h)	A1-A2	$100-240 \mathrm{Vac}(50 / 60 \mathrm{~Hz}) / \mathrm{V} \mathrm{dc}$
	Rated supply voltage tolerance		0.85 to 1.1 x Us
	Isolated rated voltage (U_{i})		300 V
	Frequency		$50 / 60 \mathrm{~Hz}$
	Maximum consumption		2 / 1 VA/W
Outputs	Contacts	15-16/18	1 SPDT
	Capacity of the output contacts (le)		AC-12 (resistive) at 250 V ac -5 A
	AC-15 at 230 V ac		3 A
	DC-13 at 24 V dc		1 A
	DC-13 at 48 V dc		0.45 A
	DC-13 at 60 V dc		0.35 A
	DC-13 at 125 V dc		0.2 A
	DC-13 at 205 V dc		0.1 A
	A300		AC-15
	R300		DC-13
	Rated thermal current ((th)		10 A fo AC
			1 A for DC
	Fuse (class gL/gG)		4 A
	Mechanical lifespan		30×10^{6} switching cycles
Characteristics	Ambient temperature allowed		
	Operation		-5 to $+60{ }^{\circ} \mathrm{C}$
	Storage		-40 to $+85{ }^{\circ} \mathrm{C}$
	Degree of protection		Enclosure IP20 / Terminals IP20
	Connection section (min. to max.) - Cable without end sleeve		$1 \times(0.5$ to 2.5$) \mathrm{mm}^{2}$
			$2 \times(0.5$ to 1.5$) \mathrm{mm}^{2}$
	Cable with end sleeves		$1 \times(0.5$ to 2.5$) \mathrm{mm}^{2}$
			$2 \times(0.5$ to 1.5$) \mathrm{mm}^{2}$
	AWG-Rigid Wire		$2 \times$ (30 to 14) AWG
	Tightening torque		0.8 to 1.2 N.m
			7 to $10.6 \mathrm{lb} . \mathrm{in}$
	Terminal screws		M3
	Assembly position		Any
	Shock resistance		$15 \mathrm{~g} / 11 \mathrm{~ms}$
	Vibration resistance		10 to $55 \mathrm{~Hz} / 0.35 \mathrm{~mm}$
	Weight		0.08 kg
	Pollution degree		2
	Overvoltage category		11
	Sensitivity adjustment		0 to $100 \mathrm{k} \Omega$
Sensors	Electrode voltage		7 V ac
	Electrode current		0.05 mA
	Maximum sensor cable length		100 m (maximum cable capacitance 2.2 nF$)^{1)}$
	Sensor operating temperature	Shaft	0 to $+260^{\circ} \mathrm{C}$
		Pendulum	0 to $+60^{\circ} \mathrm{C}$
	Acceptable sensor pressure	Shaft	$3 \mathrm{kgf} / \mathrm{cm}^{2}$
		Pendulum	-
	Sensor weight	Shaft	0.230 kg
		Pendulum	0.012 kg
Certifications	European Union		
	Canada and USA		All models
	Argentina		

Notes: 1) Avoid running electrode cables close to power cables.
In order to connect the cables, it is recommended to use single-pole cables.

Dimensions (mm)

Model RNW-EN or RNW-ES

Accessories
Adapter for Screw Fixing

PLMP Adapter

Adapter for Direct Mounting on WEG Contactors

MARC Adapter

[^5]
Global presence is essential, as much as understanding your needs.

Global Presence

With more than 30.000 employees worldwide, WEG is one of the largest electric motors, electronic equipments and systems manufacturers. We are constantly expanding our portfolio of products and services with expertise and market knowledge. We create integrated and customized solutions ranging from innovative products to complete after-sales service.

WEG's know-how guarantees the Electronic Relays is the right choice for your application and business, assuring safety, efficiency and reliability.

Availability is to have a global support networkPartnership is to create solutions that suit your needs
Competitive edge is to unite technology and innovation

Know More

High performance and reliable products to improve your production process.

Excelence is to provide a whole solution in industrial automation that improves our customers productivity.

WEG Worldwide Operations

ARGENTINA

San Francisco - Cordoba Phone: +54 3564421484 info-ar@weg.net

Cordoba - Cordoba
Phone: +54 3514641366 weg-morbe@weg.com.ar

Buenos Aires
Phone: +54 1142998000 ventas@pulverlux.com.ar

AUSTRALIA

Scoresby - Victoria
Phone: +61 397654600
info-au@weg.net

AUSTRIA

Markt Piesting - Wiener
Neustadt-Land
Phone: +43 26334040 watt@wattdrive.com

Vienna
Phone: +43 17962048
wtr@weg.net

BELGIUM

Nivelles - Belgium
Phone: +32 67888420
info-be@weg.net
BRAZIL
Jaraguá do Sul - Santa Catarina Phone: +55 4732764000 info-br@weg.net

CHILE

La Reina - Santiago
Phone: +56 227848900
info-cl@weg.net

CHINA

Nantong - Jiangsu
Phone: +86 51385989333
info-cn@weg.net
Changzhou - Jiangsu
Phone: +86 51988067692
info-cn@weg.net
Rugao - Jiangsu
Phone: +86 51380672011
zhuhua@weg.net

COLOMBIA

San Cayetano - Bogota
Phone: +57 14160166
info-co@weg.net
Sabaneta - Antioquia
Phone: +57 44449277
info-co@weg.net

ECUADOR

El Batan - Quito
Phone: +593 25144339
wegecuador@weg.net
FRANCE
Saint-Quentin-Fallavier - Isère Phone: +33 474991135 info-fr@weg.net

GERMANY

Türnich - Kerpen
Phone: +49 223792910
info-de@weg.net
Balingen - Baden-Württemberg
Phone: +49 743390410
info@weg-antriebe.de
Homberg (Efze) - Hesse
Phone: +49 568199520
info@akh-antriebstechnik.de
GHANA
Accra
Phone: +233 302766490
ghana@zestweg.com
INDIA
Bangalore - Karnataka
Phone: +91 08046437450 info-in@weg.net

Hosur - Tamil Nadu
Phone: +91 4344301577
info-in@weg.net
ITALY
Cinisello Balsamo - Milano
Phone: +39 261293535
info-it@weg.net

JAPAN

Yokohama - Kanagawa
Phone: +81 455503030
info-jp@weg.net

MALAYSIA

Shah Alam - Selangor
Phone: +60 378591626
info@wattdrive.com.my

MEXICO

Huehuetoca - Mexico
Phone: +52 5553214275
info-mx@weg.net
Tizayuca - Hidalgo
Phone: +52 7797963790
info-mx@weg.net
NETHERLANDS
Oldenzaal - Overijssel
Phone: +31541571080
info-nl@weg.net

PERU

La Victoria - Lima
Phone: +51 12097600
info-pe@weg.net
PORTUGAL
Maia - Porto
Phone: +351 229477700
info-pt@weg.net
RUSSIA and CIS
Saint Petersburg
Phone: +7 8123632172
sales-wes@weg.net

SOUTH AFRICA

Johannesburg
Phone: +27 (0) 117236000
info@zestweg.com
Cape Town
Phone: +27 (0) 215077200
gentsets@zestweg.com
Heidelberg
Phone: +27 (0) 16349 2683/4/5 wta@zestweg.com

SPAIN
Coslada - Madrid
Phone: +34 916553008
info-es@weg.net
Valencia
Phone: +34 961379296
info@autrial.es

SINGAPORE

Singapore
Phone: +65 68589081
info-sg@weg.net
Singapore
Phone: +65 68622220
info-sg@weg.net

SCANDINAVIA

Mölnlycke - Sweden Phone: +46 31888000 info-se@weg.net

UK

Redditch - Worcestershire
Phone: +44 1527513800
info-uk@weg.net

UNITED ARAB EMIRATES

Jebel Ali - Dubai
Phone: +971 48130800
info-ae@weg.net

USA

Duluth - Georgia
Phone: +1 6782492000
info-us@weg.net
Bluffton - Indiana
Phone: +1 8005798527
info-us@weg.net
Minneapolis - Minnesota
Phone: +1 6123788000
info-us@weg.net
Washington - Missouri
Phone: +1 636-239-9300
wegwill@weg.net

VENEZUELA

Valencia - Carabobo
Phone: +58 2418210582
info-ve@weg.net

For those countries where there is not a WEG own operation, find our local distributor at www.weg.net.

WEG Group - Automation Business Unit
Jaraguá do Sul - SC - Brazil
Phone: +55 4732764000
automacao@weg.net
www.weg.net \square

[^0]: Notes: The function must be selected before energizing the timing relay; changes in operation will have no effect. Changes made to the time configuration during the timing will be effected.

[^1]: Note: 1) For the ERWT models, under extreme voltage and temperature conditions, the scale accuracy may vary up to +/- 10% (full scale).

[^2]: Note: for application in generator sets, frequency inverters with 12-pulse or regenerative rectifiers, electronic power controllers (dimmers or the like) or where a high level of harmonic currents may be present (above the recommendation of IEEE519), we recommend the ERWM relay.

[^3]: Notes: It is recommended the use of three PTC sensors in series, according to IEC 60947-8.

[^4]: Models:
 VM1: PF-Phase loss, PS-Phase sequence, >Un-Overvoltage/<Un-Undervoltage, Asy-Unbalance, ND-Neutral Detection VM2: PF-Phase loss, Un-Overvoltage/Undervoltage, Asy-Unbalance, ND-Neutral Detection

[^5]: Note: the PLMP and MARC accessories can be used in any electronic relay (RTW, RPW or RNW).

